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We introduce a simple method for nonlinear parameter estimation based on a structural comparison
of target and model attractor. The parameters of the model are adapted by means of minimizing the
structural difference of the attractors. For this quantitative comparison histograms derived from a
coarse graining of the phase spaces are used. We present a time discrete as well as a continuous
example to demonstrate the efficiency of this method. The target attractors are computed from the
Hénon map and the Rössler system, respectively. The model systems are chosen to be fairly universal
endowed with free parameters that are adapted so that the model attractor resembles the target. The
estimations work accurate and acceptably fast up to four parameters.
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1. Introduction

Due to the sensitive dependence on initial condi-
tions classical methods for parameter estimation like
the least squares method applied to time series data fail
for nonlinear dynamical systems. Therefore, a couple
of new methods have been derived for chaotic time se-
ries [1]. Prominent methods rest upon synchronization
of the model with the target (data) system [1 (chap-
ter 14) – 3]. The parameter values of the model system
are adapted by means of minimizing the “force” for
synchronization. The set of free parameters defines a
class of model systems. The model that corresponds
to the estimated set of parameter values then can be
interpreted as the model with the least synchroniza-
tion force. This is a temporal argument. In some cases,
however, it can be observed that this procedure leads
to a non-bounded model system in the phase space.
In other words, sometimes a diverging system can be
easily (using a very small force term) synchronized
to a bounded chaotic attractor. Structurally, however,
model and target system are quite different in these
cases.

In this paper we argue for a structural comparison
of target and model attractor. We suggest a very sim-
ple algorithm which turns out to be quite effective. In
a nutshell, we compare the target with the model at-
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tractor by defining distributions on a coarse grained
grid in phase space. For the comparison of the result-
ing histograms we suggest two possibilities: a least
squares procedure and a comparison based on a Pois-
son distribution, respectively. The least squares proce-
dure can be justified in the limit of high “occupation
numbers” in the coarse grained cells. Depending on the
specifically chosen coarse graining a multinomial or a
Poisson distribution may be more appropriate. We re-
port on the usage of Gaussian, weighted Gaussian and
Poisson distribution, respectively, applied to a discrete
chaotic attractor. We also report on the application of
the Gaussian and weighted Gaussian to a continuous
chaotic attractor.

2. Data

The target time series are artificially computed from
known systems in order to judge the quality of the esti-
mations. We demonstrate the estimations of parameters
for the discrete Hénon map as well as for the continu-
ous Rössler attractor. The Hénon map is defined as

xn+1 = α1 −α2x2
n + α3yn,

yn+1 = α4xn,
(1)

where the αi are constant parameters. The transient
phase is skipped and 600 points are kept to provide
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Fig. 1. Coarse graining for the Hénon attractor. The rectangu-
lar area (with sidelengthes Dx and Dy, respectively) that en-
closes the attractor is chosen to be one tenth larger than the
attractor’s width (dx and dy, respectively) at each side with
respect to the given coordinate. Then this area is subdivided
into γ × γ cells, here γ = 10 (dotted lines). Since γ defines a
relative spacing with respect to the maximum extension the
actual coordinate labeling is suppressed. The Hénon attractor
is represented by 600 subsequent points whereby the tran-
sient phase has been skipped.

a target system. The values of the target parameters
have been chosen to be α1 = 1.0, α2 = 1.4, α3 = 1.0,
α4 = 0.3.

The Rössler system reads:

ẋ(t) = −β1z(t)−β2y(t),
ẏ(t) = β3x(t)+ β4y(t),
ż(t) = β5 + β6x(t)z(t)−β7z(t),

(2)

where ẋ denotes the time derivative, as usual. The tar-
get parameters are set to the values β1 = 1.0, β2 = 1.0,
β3 = 1.0, β4 = 0.2, β5 = 0.2, β6 = 1.0, β7 = 5.7 which
lead to a chaotic attractor.

The phase spaces of the resulting attractors are
coarse grained in order to derive a histogram. For
this purpose we choose a rectangular (for the 2-
dimensional Hénon case) or a cuboid (for the 3-
dimensional Rössler case) area in phase space that
runs parallel to the axes and encloses the attractor. The
edge length of each side of the area symmetrically ex-
tends the width of the attractor by 1/10 with respect
to the phase space axes. This situation is depicted in
Fig. 1 for the Hénon attractor. The maximum widths
of the attractor with respect to each axis are denoted

−→ Fig. 2. Number of cells (y-axes) with a certain occupa-
tion number (x-axes) for γ = 20,30,50 (from top to bottom)
for the Hénon attractor.
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Fig. 3. Dependence of the er-
ror function on the variation
of two parameters, ζ2,ζ4, for
the Hénon case (global view).

by dx and dy, respectively. This leads to edge lengths
of the surrounding rectangular area of D x = 1.2dx and
Dy = 1.2dy. The coarse graining (∆x, ∆y) is chosen to
be (∆x = Dx/γ , ∆y = Dy/γ). The grid resulting from
γ = 10 is shown in Fig. 1 as dashed lines. Since it is
straightforward we refrain from showing the analogous
picture for the Rössler attractor. Of course, in this case
the surrounding volume is 3-dimensional.

The number of points in each cell of the grid is
counted in order to construct a histogram. Figures 2a –
c show the distribution of the occupation number of
cells for γ = 20, γ = 30 and γ = 50, respectively, for
the Hénon case. The x-axis is the occupation number
and the y-axis is the number of cells. Since the at-
tractor is localized in phase space a lot of cells are
empty. Therefore, there is a large peak for the occu-
pation number zero. This peak, however, is suppressed
in Figs. 2a – c in order to have a visually meaningful
scale for the comparison of the more interesting non-
empty cells. In the case of γ = 20 the largest occupa-
tion number is 36 whereas for γ = 30 the largest num-
ber is 20 and for γ = 50 a maximum count of 15 is
obtained. We refrain from showing the histograms for
the other cases since the tendency can clearly be seen
from the depicted cases. A graining finer than 50 does
not make sense since most of the cells contain a sin-
gle point of the attractor. This means that the adjust-
ment pressure for the model attractor is too harsh. In
addition, the simple least squares adaptation routine is

no longer applicable. If, to the contrary, the graining
is too coarse the information on the spatial structure is
lost. We recommend to use γ = 30 for the Hénon at-
tractor in the given case of 600 data points. Also the
Rössler attractor is represented by 600 points. In this
case, however, a long time series of 6000 points is com-
puted using a fourth order Runge-Kutta algorithm with
step size ∆ t = 0.05 whereby each 10th point is kept
in order to cover the whole attractor. We mention in
passing that we observed no change in the behavior of
the estimation procedure when using ∆ t = 0.1 for the
Runge-Kutta algorithm and 600 subsequent points. In
the latter case the trajectory shows roughly ten cycles
of the attractor which seems to be enough information.
In other words, if the transient phase is skipped the es-
timation does not depend on intitial conditions.

The histogram is a positive distribution, of course.
However, the peak at zero can virtually be stretched
into the negative direction, so to speak, by using weight
functions. Empty cells that are far away from the at-
tractor are weighted stronger than empty neighboring
cells. We come back to this point in the next section
where we define the error function for the adaptation
routine.

3. Error Function for the Hénon Attractor

In a first approach we choose a simple least squares
routine for the adaptation of a model attractor to the
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Fig. 4. Dependence of the error
function e(ζ2,ζ4) on the varia-
tion of two parameters, ζ2,ζ4,
for the Hénon case (local view
arround the minimum).

data. The number of points in cell (i, j) with 1 ≤ i ≤ γ
and 1 ≤ j ≤ γ is denoted by hi j for the target attractor
and h′i j for the model attractor, respectively. The error
function reads

e(ζ ) =




γ

∑
i=1

γ

∑
j=1

(
hi j −h′i j(ζ )

)2
,

if all model points lie inside
the searching volume, and

Π otherwise,

(3)

which, of course, depends on the set of model pa-
rameters ζ . The constant Π is a penalty value for di-
verging model trajectories. This means, if any point of
the model trajectory lies outside the searching volume
then the corresponding set of parameters will be dis-
carded by attributing a large penalty value to the error
function.

The model which is expected to result in an attractor
that resembles the Hénon attractor reads:

x′n+1 = ζ1 − ζ2x′n
2 + ζ3y′n,

y′n+1 = ζ4x′n.
(4)

In order to give a vivid impression of the appearance
of the error function in Fig. 3 we stepwise varied two
parameters in equidistant steps, −0.4 ≤ ζ2 ≤ 1.6 in 80
steps and −0.5 ≤ ζ4 ≤ 0.5 in 60 steps, respectively,

whereas the other parameters have been fixed to the
target values ζ1 = 1 and ζ3 = 1, respectively. Figure 3
shows a global view onto the error function whereas
Fig. 4 shows details arround the minimum, both for the
case of γ = 30.

The plateaus emerging in the appearance of the er-
ror function can easily be explained. Some parameter
values lead to fixed point attractors inside the search-
ing region but outside the target attractor. These point
attractors are robust against parameter changing within
a quite large range of values leading to the same error
function value. The plateau at e(ζ ) = 106 is due to a
penalty of this magnitude when the model attractor di-
verges from the searching region.

The proposed method makes sense only if the de-
pendence of the error function on the intitial condi-
tions is below an acceptable threshold. In other words,
how does the error function behave when two Hénon
attractors with exactly the same parameters but differ-
ent initial conditions are compared? Figure 5 shows the
result of an according calculation where the error func-
tion values for 100 model systems with randomly var-
ied initial conditions but exactly the same values for
the parameters as the target system are presented. Only
one model system has been chosen to have exactly the
same initial values as the target which, of course, leads
to a vanishing error function value. The cloud of points
has an approximative upper limit of 1500. This means,
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that the precision in a parameter estimation routine is
limited by this value which is, however, well below the
bulk of the error function shown in Figs. 3 and 4, re-
spectively. The stop criterium of the estimation proce-
dure has been chosen accordingly.

4. Error Function for the Hénon Attractor Using
Weights

The plateaus observed in the simple error function
of (3) may lead to a bad convergence of the minimiza-
tion routine and, as a result, to get stuck in a local mini-
mum. We now define an improved error function using
weight coefficients ωi j for a given cell (i, j). To this
end we introduce a distance, si j, of the given cell to the
attractor and weights depending on this distances in the
following way:

si j = mink,l

(√
(i− k)2 +( j− l)2

)
with hkl �= 0,

ωi j =

{
1 if hi j �= 0,

csi j otherwise
,

e(ζ ) =
γ

∑
i=1

γ

∑
j=1

ωi j
(
hi j −h′i j(ζ )

)2
. (5)

This error function e(ζ ) is capable to suppress the
plateaus considerably and smooth the shape in compar-
ison to the unweighted error function. The result can be
seen in Fig. 6 for γ = 30 and c = 1.0. The two param-
eters ζ2,ζ4 have stepwise been varied in the same way
as explained in the previous section for the unweighted
case. One sees that the appearance of the error function
is stretched in comparison with the unweighted case.
The penalty value, Π , has been set to 5 · 106 which
leads to the “ceiling” at the top. This dispersion of the
plateaus avoids running into local minima. The conver-
gence behavior of the minimization routine using the
weighted error function is much improved. We abstain
from showing the local view for this case since it does
not supply new insight.

5. Error Function for the Hénon Attractor Using
Poisson-Like Distribution

For the case of small occupation numbers the least
squares approach in the above definitions of the error
function may not be justified. We therefore introduce
another error function based on a Poisson distribution
for the occupation numbers. The new error function is

defined as follows:

e(ζ ) =




γ

∑
i=1

γ

∑
j=1

ωi j

h′i j(ζ )

∑
k=1

logk−
γ

∑
i=1

γ

∑
j=1

h′i j(ζ ) loghi j,

if hi j > 0∧h′i j > 0,

−
γ

∑
i=1

γ

∑
j=1

h′i j(ζ ) loghi j,

if hi j > 0∧h′i j = 0,

γ

∑
i=1

γ

∑
j=1

ωi j

h′i j(ζ )

∑
k=1

logk, if hi j = 0∧h′i j > 0,

0, otherwise.

(6)

In this equation, the same weights, ω i j, as defined
in (5) are used. Equation (6) is the result of (neg-
atively) logarithmizing the Poisson distribution (log-

likelihood) hh′
h′! eh, whereby the factorial leads to the

summation ∑h′
k=1 logk. Figure 7 has been produced

using c = 1.0 for the weights. The plateau resulting
from the penalty for diverging model attractors is not
shown in order to focus on the relevant part of the error
function.

6. Results for the Hénon Attractor

For the minimization of the error function with
respect to the parameters we used the Nelder-Mead
simplex method along with some modifications as
described in [4]. From this paper we derived our
own simple code implemented in the MATLAB 6.0
environment. This means, that we abstained from
highly elaborated tricks to improve the convergence
behavior that may come along with a commercial
software.

The procedure is as follows. For each suggested set
of parameter values a model attractor as well as the
corresponding histogram and therefrom the error func-
tion according to (3) or (5), respectively, is computed.
In case the model dynamics produces a point outside
the searching volume the computation of the time se-
ries is immediately interrupted and the error function
set to a penalty value, Π , as defined in (3). This saves
a lot of computational time. It is, therefore, also im-
portant to choose a proper searching volume which is
not too large but also not too small since in the lat-
ter case the restriction is too harsh. Since the transient
phase is skipped for each time series of the model sys-
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Fig. 5. Dependence of the error
function on the initial conditions
for the Hénon case. 100 model
systems have been simulated
with initial conditions (x1,y1)
randomly varying around x1 =
0.5 and y1 = 0, respectively. Only
one of the model systems has
exactly the same initial condi-
tions as the target system, x1 =
0.5,y1 = 0, which leads to a van-
ishing error function. The cal-
culation is based on 600 subse-
quent iterations of the map af-
ter 250 time steps in the be-
ginning (transient behavior) have
been skipped. The coarse grain-
ing parameter is γ = 30.

0

0.5

1

1.5
−0.5

0
0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
6

ζ
4

ζ
2

e
(ζ

2, ζ
4)

Fig. 6. Dependence of the er-
ror function on the variation
of two parameters, ζ2,ζ4, for
the Hénon case using weights
defined in (5).

tem the initial value of the dynamics is relatively unim-
portant unless not chosen extremely far from the tar-
get attractor. We indeed used one of the points of the
target attractor to start the model dynamics. Given the
correct parameter value for the model system the error
function should vanish. The worst model for the un-

weighted error function is given by a point attractor in-
side the searching volume but not on the target attractor
which leads to an error function value of slightly more
than N2 = 6002 (where 600 is the length of the time
series). We have chosen s = 2 · 10−3N2 as a stop cri-
terion for the minimization which turned out to be an



K. Matsumoto and H. H. Diebner · An Efficient Method for Nonlinear Parameter Estimation 245

0
0.5

1
1.5

−0.5
0

0.5

0

0.5

1

1.5

2

2.5

3

x 10
4

ζ
2ζ

4

e
(ζ

2, ζ
4)

Fig. 7. Dependence of the er-
ror function on the variation of
two parameters, ζ2,ζ4, for the
Hénon case using a Poisson-like
distribution defined in (6).
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Fig. 8. Dependence of the
weighted error function on
the variation of two param-
eters, ζ6,ζ7, for the Rössler
case.

appropriate value (please compare with Fig. 5). This
holds also for the weighted case according to our ex-
perience, although the weights have a slight impact on
the maximum error function value.

The estimation is quick and robust for at least three
parameters. The time consumption is about 15 minutes
with a 1.6 GHz “Pentium M” laptop computer. We also

estimated six parameters by adding two terms to the
Hénon system:

x′n+1 = ζ1 − ζ2x′n
2 + ζ3y′n,

y′n+1 = ζ5 + ζ4x′n + ζ6y′n.
(7)

In the latter case of six parameters it was necessary to
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) Fig. 9. Dependence of the error function on the initial con-

ditions for the Rössler case. 100 model systems have been
simulated with initial conditions [x(0), y(0), z(0)] randomly
varying around x(0) = 2, y(0) = 1, z(0) = 0, respectively.
Only one of the model systems has exactly the same initial
conditions as the target system, x(0) = 2, y(0) = 1, z(0) = 0,
which leads to a vanishing error function. The calculation is
based on 600 subsequent time steps of the discritized differ-
ential equation after 250 time steps in the beginning (tran-
sient behavior) have been skipped. The coarse graining pa-
rameter is γ = 20.

start the minimization routine several times with ran-
domly chosen initial values for the parameters. One
has to calculate with at least two hours for this esti-
mation. For some unluckily chosen initial values the
routine took roughly three hours to reach the minimum
since obviously the plateaus retarded the convergence.
In some cases it happend that the minimization gets
stuck in a local minimum as a result of the plateaus
which necessitates either restarts or a more sophisti-
cated escape procedure within the minimization rou-
tine. The weighted error function, however, led to an
enormous improvement in this respect. The best re-
sults turned out from a coarse graining using γ = 30.
The estimated parameters are identical to the original
ones up to three digits. We did not implement the com-
putation of a goodness of fit measure so far which has
of course to be done in a future version of the rou-
tine. Since in our case the original parameters are avail-
able we abstaine from deriving such a measure in this
paper.

7. Application to the Rössler Attractor

The model equation for the Rössler system reads:

ẋ′(t) = −ζ1z′(t)− ζ2y′(t),
ẏ′(t) = ζ3x′(t)+ ζ4y′(t),
ż′(t) = ζ5 + ζ6x′(t)z′(t)− ζ7z′(t).

(8)

The error function for this case is a straightforward
extension of (3) and (5), respectively, from two to
three dimensions. Therefore, we refrain from explic-
itly showing the equations.

The appearance of the weighted error function can
be seen in Fig. 8. For this figure, the two parame-
ters ζ6 and ζ7 have been varied in 60 and 80 equidis-
tant steps, respectively, in the range of 0.5 ≤ ζ6 ≤ 1.5
and 2.5 ≤ ζ7 ≤ 6.5. The coarse graining factor has
been chosen to be γ = 20. The weighted error func-
tion (which is shown in Fig. 8) looks similar to the un-
weighted case (not shown). It is merely stretched by a
factor that depends on the weight coefficient, c, enter-
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Fig. 10. Dependence of the error function on the initial con-
ditions for the Rössler case. The same conditions have been
used as in Fig. 9 with the exception that only each 10th iter-
ation point has been used in order to produce a widespread
cloud of points that covers the whole attractor.

ing the weights [cf. (5)]. For the computation under-
lying Fig. 8, c = 20 has been chosen. The minor in-
fluence of the weights on the global shape of the error
function is due to the fact, that all model attractors lie
on or in the vicinity to the target attractor. The param-
eter ζ7 is a bifurcation parameter leading to a period-
doubling behavior when increased from a small to a
larger value. The resulting periodic solutions, however,
approximately lie on the original chaotic attractor. The
other parameter, ζ6, has merely a scaling behavior of
the attractor. We point out, however, that the weights
make sense nevertheless when estimating more than
two parameters.

As already pointed out for the Hénon attractor, the
proposed method makes sense only if the dependence
of the error function on the intitial conditions is below
an acceptable threshold. Figures 9 and 10 show the re-
sult of a calculation where the error function values for
100 model systems with randomly varied initial condi-
tions but exactly the same values for the parameters as
the target system are presented. In Fig. 9 the time se-

ries consists of 600 subsequently calculated states with
a time step of h = 0.05 used in the Runge-Kutta 4th-
order procedure. Figure 10, in contrast, has been pro-
duced using only each 10th step of the numerical it-
eration in order to distribute the 600 points onto the
whole attractor. This leads to a reduction of the upper
border of the error function to less than half (∼ 1800)
of the limit for the first case (∼ 4500). Again, like in
the Hénon case, the cloud of points is well below the
bulk of the error function shown in Figure 8. The stop
criterion of the estimation procedure has been chosen
accordingly.

For the estimation procedure we stick with γ = 20
and c = 20. The time consumption for the estimation
of two parameters is less than half an hour. Again, the
values of the parameters are equal to the original val-
ues up to at least three digits. The estimation of more
than two parameters leads to an enormous increase of
computational time. Three parameters are managable
in less than three hours. Four parameters need several
hours, strongly dependent on the initial guess. How-
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ever, the case of five parameters leads to an almost un-
acceptable time consumption in the order of magnitude
of twenty hours, also depending on the initial guesses
for the parameter values. As already mentioned for the
Hénon attractor, in some cases of unluckily chosen ini-
tial values some restarts with randomly chosen param-
eter values are necessary.

8. Conclusions

We presented a procedure for parameter estimation
for nonlinear dynamical systems based on a structural
comparison in phase space. The shape of the model at-
tractor that contains a set of free parameters is adapted
to the target attractor. This spatial algorithm has some
advantages compared to a temporal approach. Many
techniques of temporal adaptations are based on syn-
chronization. As we mentioned, it frequently happens
that a diverging system can be easily synchronized to a
target system leading to a non-acceptable model. Our
algorithm in contrast focuses on the conservation of in-
variant stuctures in phase space. Independently of the

precision of the estimated parameters, all models re-
semble the target attractor. The method cannot result
in a diverging attractor due to the structural approach.

Up to four parameters of two- or three-dimensional
dynamical systems can be estimated acceptably fast
and robustly. We note however, that some efforts put
into the enhancement of the minimization routine and
– most important – a combination with temporal ap-
proaches may improve the estimation efficiency con-
siderably. For the case of time series data we expect
that our method can be applied to attractor reconstruc-
tions and, therefore, considerably contributes to time
series analyses.
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