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Abstract

The cosmos seems live on entropy according to Boltzmann. Prigogine calls ‘‘live’’ structures like stars, flames and

organisms ‘‘dissipative structures’’. A new functional of the microstate of realistic computer-implementable far-from-

equilibrium systems is explained in its geometric and intuitive content. It can be combined with an exactly invertible

algorithm to reveal the essence of a microscopically described system�s inexorable approach towards equilibrium. All

life-like roundabout ways can for the first time be studied in detail both forwards and backwards in time, so that their

secret can be lifted.

� 2003 Elsevier Ltd. All rights reserved.
Why should one take up a thread of thinking that was largely abandoned since Boltzmann�s time––to understand in

microscopic detail the approach towards equilibrium of a macroscopic gaseous or fluid or plasmatic system? The

answer would be that the ‘‘core’’ of this mysterious engine of evolution has never been laid bare and made palpable up

to the present moment.

In the following, we present a new attempt based on a technical improvement of an idea of Boltzmann�s, namely, his

famous H -function (originally pronounced ETA-function). In 1898, Boltzmann saw a way to define a deterministic

microscopic entropy valid close to equilibrium [1]. His seminal idea was the following: Replace the N -particle system by

N overlayed one-particle systems––so as if each particle were alone. Then look only at the differences between the state

points of neighbouring particles. Boltzmann himself only looked at the momentum subspace. As the system of particles

approaches equilibrium, the mean value, taken over all the individual differences, becomes a maximum. The same fact

still holds true for the logarithm of the same sequence of mean values obtained on the way towards equilibrium. The

absolute value of the resulting function, which becomes maximal at equilibrium, is nothing but the negative of the H -

function; its positive obviously qualifies as a deterministic entropy, valid close to equilibrium.

The H -function method just described works satisfactorily only close to equilibrium [2]. The reason has to do with

the fact that only next-neighbor distances were taken into account. Moreover, only the velocities (momenta), not the

positions, were included as mentioned. Is it possible to do away with these shortcomings and arrive at a ‘‘more

powerful’’ deterministic entropy function which remains valid arbitrarily far away from equilibrium?
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The following function appears to be up to the task:
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In Eq. (1), N is the number of particles and the rij are the momentary distances between all pairs of particles, in the

full one-particle phase space into which all particles are projected, in accordance with Boltzmann�s idea. 1 The formula

(1), in the form written above applies to a gas in two dimensions. The second term on the right-hand side, the one within

the straight vertical brackets, resembles a correlation function. While Eq. (1) itself has already been reported in Ref. [3],

our aim here is to explain how it works in geometric and intuitive terms.

The main result of our previous publication is summarized in Fig. 1. Fig. 1 shows the approach to equilibrium in a 2-

D volume of 100 particles whose positions had initially been confined to one half of the square (where they had been

equidistributed). The approach towards the maximum is surprisingly smooth and monotonic––despite the small

number of particles (100) involved. Is it possible to explain in simple terms how the new function (Eq. (1)) works?

To answer this question, let us first look at a simplified special case in one spatial dimension. In Fig. 2, only the

particles� positions are presented. One sees three particles at a (near) maximal mutual spacing in a one-dimensional

volume. For each particle, two distances exist with respect to the other particles (in the N -particle case, it is N � 1 such

distances). Their products form three rectangles as shown in the figure. The geometric mean taken over the three

rectangles of Fig. 2 evidently generates a mean area––a mean two-dimensional cross-section through three-dimensional

configuration space. This cross-section clearly is maximal for the configuration shown. The example allows us to get a

geometric intuition into the workings of Eq. (1).

To this end, we now switch to configuration space. The configuration space of the three particles of Fig. 2 is depicted

in Fig. 3. (Note that the position of each particle along the one-dimensional real space can indeed be read off from a

single point now, since the cubic configuration space is made up of three orthogonal copies of the original space.) If we

assume in the following that the three particles are equal, the cubic configuration space decomposes into six ðN !Þ equal
subspaces. This is shown in Fig. 3b which displays one of the six simplices formed [4]. The surviving subspace resembles

a slightly tilted piece of Black-Forest Cherry Cake: The state point seen in Fig. 3b is the cherry.

The position of the dot in Fig. 3b corresponds to the particle configuration of Fig. 2. The bold arrow in Fig. 3b

marks the distance of this state point from the base line of the simplex––which in turn corresponds to the main space

diagonal of the original cube. The length of the arrow is an intuitive measure of the momentary volume of configuration

space. More precisely, the arrow marks the ‘‘thickest orthogonal cross-section’’ through the simplex (namely, or-

thogonal to the base line). This principle carries through, as is shown in Fig. 4. As the number of particles is increased,

in every case an equidistant configuration causes the distance of the state point from the hyperdiagonal to be near-

maximal.

Specifically, if N is equal to 4, the simplex of Fig. 4b applies. It represents a segment of a tessaract (the unit cube in

four dimensions). It possesses a l/24th (1/4!) of the latter�s volume. In general, with N particles, we have the so-called

‘‘standard N ! triangulation of the N-cube’’ [5]. In each case, a state point characterized by a (near-) maximal ‘‘diameter’’

of configuration space (more precisely, a near maximal cross-section) is obtained. Always, the ‘‘waist-line’’ of the

surviving simplex of configuration space contains the cherry. The cherry is the state point that is distinguished by all

particles assuming a maximal distance from each other.

Fig. 4c exhibits one more innocent-looking feature. The decay towards the ends of the main diagonal of the cube

(base line of the simplex) is concave rather than convex because the ‘‘orthogonal cross-section through phase space’’

decays more rapidly than its height (the radius of Fig. 3b). In fact, this decay is basically exponential. Note that in high

dimensions, the outer regions (slices through the hyper-simplex away from the middle) contain virtually no volume any

more, as has been worked out for a related case by Fields medalist Michael Gormov (Andreas Knauff, private com-

munication 1998).

We now suggest that Eq. (1) works in general in exactly the same fashion as we have shown above for a special case

(namely, for the configuration space of a one-dimensional gas). This leads us naturally to the conclusion that a mo-

mentary state point can indeed represent the instantaneously valid phase space volume.
e shall see later that the product of these distances (the sum of their logarithms in Eq. (1)) actually represents a ‘‘mean diameter’’

phase space.



Fig. 2. Demonstration of how a mean phase space cross-section is constructed by Eq. (1). A simplified special case is shown: three

particles in one dimension (cf. text).

Fig. 3. The configuration space corresponding to the system of Fig. 2. (a) State point in full configuration space. (b) State point in the

reduced configuration space valid in the presence of indistinguishability (cf. text).

Fig. 1. Time-dependent entropy: Approach towards equilibrium from a far-from-equilibrium initial condition. Newtonian molecular

dynamics simulation (MDS) of a 100-particle gas in two dimensions, with the equal particles initially confined to the left half plane.

The function shown on the ordinate is defined by Eq. (1) (cf. text).
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We are now in the position to finally draw a connection to the famous Gibbs equilibrium entropy formula [6]. It

reads
Seq ¼ k lnU: ð2Þ
In Eq. (2), U is the phase space volume at equilibrium (i.e., the maximum possible extension of phase space in all

directions, taken in dimensionless units). We specifically propose that Eq. (1) can be interpreted as a time-dependent

analog to Eq. (2). In the same vein, Eq. (2) becomes the t ! 1 limit of Eq. (1). All that is still wanting is the correct

normalization (which is deferred to a subsequent publication).



Fig. 4. Extension of Fig. 3 to arbitrary particle numbers. (a) ‘‘Cherry cake’’, (b) ‘‘Hypercake’’, (c) ‘‘Sombrero galaxy’’ (cf. text).
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Is the finding presented above surprising in its philosophy? We think it is not. Hurley [7], for one, said very similar

things on the basis of qualitative ‘‘topological’’ arguments. Secondly, modern microscopic transport theory points in

the same direction (G€uunter Radons, personal communication 1998). Nevertheless, the above geometric picture appears

to be new. Briefly speaking, Eq. (1) represents an explicit observable that allows one to hold a close watch over a multi-

particle system––all the way along its approach towards equilibrium. Such an observable and way of monitoring has,

apparently, been lacking up till now. We predict that future microscopic studies of simple dissipative structures (cf. [8]),

like an autocatalytic oxygen–hydrogen reaction [9] or an evolutionary chemical soup [10] or a turbulent jet stream, will

elucidate in more detail why it is that nature craves macroscopic complexity. A candidate hypothesis is Prigogine�s
principle of minimum entropy production [11]. While the latter is analytically valid only close to equilibrium [11], a

generalization (‘‘principle of self-inhibition of energy dissipation’’), covering the whole evolutionary ‘‘second arrow’’ of

the cosmos, appears to be admissible. This hyphothesis can be falsified for the first time now using the algorithm of Eq.

(1).

To conclude, a new observable of microscopic phase space has been discussed. This observable enables one to

monitor and better understand in detail the approach of a far-from-equilibrium system towards its bottom line. The

origin and breakdown of dissipative structures in nature can be studied in its finegrained causation, if one is ready to

confine oneself to a computer universe. 2 Hereby, a calculation of the underlying Hamiltonian dynamics with an exactly

reversible algorithm [12–15] will make it possible to go back and forth along a single microtrajectory of the system at

hand. In this way, it becomes possible to check why a particular step in the evolution of the system in question (like an

analog to the origin of life) took place in the way it did in the first place. We feel the science of complexity has acquired

an important new tool.
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